If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8t^2-22t-56=0
a = 8; b = -22; c = -56;
Δ = b2-4ac
Δ = -222-4·8·(-56)
Δ = 2276
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2276}=\sqrt{4*569}=\sqrt{4}*\sqrt{569}=2\sqrt{569}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-22)-2\sqrt{569}}{2*8}=\frac{22-2\sqrt{569}}{16} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-22)+2\sqrt{569}}{2*8}=\frac{22+2\sqrt{569}}{16} $
| x-(3-x)=x+15 | | 6b+6b=-12 | | -8r+5(3r+1)=-44 | | -3/4y-1/12=-1/9y-1/24 | | 1/3x—5+171=x | | -6=-10+x/4 | | 5y-3=y+56 | | 11x+45=4x+3 | | 2/5=5/8n-160 | | -(7r-2)=2 | | 16x^+4=0 | | 3n-5+2n=-20 | | 5(t-5)=5t+24 | | 256^x=64 | | 2y-7=7y+28 | | -3/4(x+1/9)=-1/9(x+3/8) | | 5x-(3x+0)=1 | | x=20x≤44 | | -3(9d+8)=-25 | | 800*0.032*t=150 | | Y=2.3x+64 | | -4b-2-5=34 | | -20=-2(4-x)= | | -29=4s+8s | | 4(x-5+2)=x+5 | | 4-2(3x+7)-13=6x | | 800*0.032*r=150 | | 5(x-5)+4x=7x+2(x-5) | | 2v+36=2v | | 40n=28/22 | | 4(x-5+2=x+5 | | 40/n=28/22 |